Recent Advances in the Management of Pancreatic Cancer

Session VII: Innovation in Oncology Treatment 3nd International Conference on Phase 1 and Early Phase Clinical Trials (ICPOEP 2016)

Andrew H. Ko, MD

Professor of Medicine, Division of Hematology/Oncology

UCSF Comprehensive Cancer Center

Pancreatic cancer: Scope of the problem

- Stage for stage, pancreatic cancer is associated with the lowest survival rates of any major cancer type
- Within the decade, pancreatic cancer is expected to rise to the #2 leading cause of cancer-related mortality in the United States (behind lung cancer)
- The vast majority of patients (80-85%) are inoperable at the time of diagnosis
- Many patients suffer from cachexia, anorexia, and rapidly declining performance status, making them poor candidates for participating in experimental therapy

There are currently two first-line standards for the treatment of advanced metastatic pancreatic cancer...

FOLFIRINOX vs gemcitabine Conroy et al, N Eng J Med 2011, 364:1817-25.

Gemcitabine/nab-paclitaxel vs gemcitabine
Von Hoff, N Engl J Med 2013; 369:1691-703.

As well as the first agent approved for the 2nd-line setting = nanoliposomal irinotecan (nal-IRI)

~80,000 irinotecan molecules/liposome

- MM-398 (120 mg/m²) clinical PK show extended circulation
 - 70x higher AUC of total irinotecan in blood vs conventional irinotecan (300 mg/m²)
- MM-398 achieved 5x higher levels of SN-38 (active metabolite) in tumor compared to blood at 72 hours

NAPOLI-1 trial: Improvement in median survival by ~ 2 months (nal-IRI/5-FU/LV vs 5-FU/LV, 6.1 vs. 4.2 months, HR 0.67, p=0.012)

1. Roy AC et al. *Ann Oncol*. 2013;24:1567-1573. 2. Ramanathan RK et al. Proc.105th AACR; 2014. CT224. 3. Ko AH et al. *Br J Cancer*. 2013;109:920-925. 4. Wang-Gillam A et al. Lancet 2016;387:545-557.

What are the challenges of moving beyond conventional cytotoxic therapies in pancreatic cancer?

- The pancreatic cancer microenvironment includes a dense, desmoplastic stroma that impedes effective drug delivery.
- Pancreatic cancer is generally felt to be a nonimmunogenic tumor.
- There are no validated therapeutic targets in pancreatic cancer, and no predictive molecular biomarkers that allow us to "personalize" treatment for patients with pancreatic cancer.

Novel drugs in development for advanced pancreatic cancer

Class	Examples		
Novel cytotoxics	 MM-398 (nanoliposomal irinotecan) TH-302 (hypoxia-activated mustard) 	Negative phase II/III trials in	
Stromal modifying agents	PEGPH20 (recombinant hyaluronidase)CD40 mAbVitamin D analogues		
Immunotherapies	 CRS-207 (attenuated Listeria vaccine) Immune checkpoint inhibitors/PD-1 mAbs IDO Inhibitors Chimeric antigen receptor (CAR) T cells? 		
Signal transduction inhibitors	 Ruxolitinib (JAK-STAT inhibitor) Istiratumab (MM-141; bispecific IGFR/HER3 mAb) Ibrutinib (BTK inhibitor) Notch inhibitors (demcizumab, tarextumab) PARP inhibitors 		

Novel therapeutics beyond chemotherapies cross mechanistic boundaries

The importance of the tumor stroma in pancreatic cancer: Is this a viable therapeutic target?

Courtesy of Eric Collisson, MD.

Breaching the Cancer Fortress

The predominant and invariably lethal form of pancreatic cancer-ductal adenocarcinoma—is characterized by an enveloping fibrotic stroma of excessive connective tissue and cells that forges rockhard tumors. These tumors are refractory to essentially all therapies; gemcitabine, the standard-of-care chemotherapeutic drug, extends survival by only a few weeks. It has long been surmised that these pathological and clinical features are interconnected. On page 1457 in this issue, Olive *et al.* (1) confirm this notion, showing that cancer-associated fibroblasts in pancreatic ductal adenocarcinoma are responsible for a poorly vascularized architecture that imposes a barrier to drug

The pancreatic tumor stromal microenvironment

A complex and dynamic interplay between multiple cellular

1. Evans A, Costello E. *Frontiers in Physiology*. 2012;3:270. 2. Quail DF, Joyce JA. *Nat Med*. 2013;19:1423-1437.

Stromal depleting/modifying agents

- Hedgehog inhibitors¹
- Recombinant human hyaluronidase: PEGylated-rHuPH20²
- Vitamin D analogues³
- Nab-paclitaxel?⁴

Hyaluronan is a major component of the extracellular matrix (ECM)

- Hyaluronan is degraded by hyaluronidase
- Recombinant human hyaluronidase: PEGylated-rHuPH20

Whatcott et al. Cancer Discovery. 2011;1:291-296.

Effects of hyaluronidase on the tumour vasculature and interstitial pressure in pancreatic cancer

Michl and Gress, Gut 2012;61:1377-1379.

PEGPH20 combined with chemotherapy remodels tumor stroma and re-expands microvasculature

GEMCITABINE ALONE

GEMCITABINE + PEGPH20

Provenzano et al, Cancer Cell 2012.

Phase 2 HALO-109-202 trial

Primary endpoint: Progression-free survival

Phase 2 HALO-109-202 trial results (preliminary)

	Gemcitabine-Nab- Paclitaxel + PEGPH20	Gemcitabine- Nab-Paclitaxel	Statistical Significance	
TOTAL STUDY POPULATION				
Progression-free survival	5.7 months	5.2 months	HR 0.69, P = .11	
Response rate	41% (30/74)	34% (21/61)	P = .48	

• Higher rate of **thromboembolic events** on PEGPH20 arm during first stage of enrollment (42% vs 25%); mitigated during second stage with addition of prophylactic enoxaparin

Hingorani SR et al. *J Clin Oncol*. 2015:33(suppl; abstr 4006).

Current/future PEGPH20 clinical trials

- ➤ SWOG phase I/II trial (S1313): modified FOLFIRINOX +/- PEGPH20
- Phase III trial of gemcitabine/nab-paclitaxel PLUS PEGPH20
 - ➤ Limited to patients with tumors exhibiting high levels of HA expression

Stromal depleting strategies: Proceed with caution?

- Lessons learned from **Hedgehog story** in pancreatic cancer (Olive, *Science* 2009)
- The tumor stroma may be a physical barrier hampering drug delivery... but also may have protective effects in restraining tumor growth/progression!
 - Stromal depletion may result in more aggressive tumor phenotype (Rhim et al, Cancer Cell 2014; Ozdemir et al, Cancer Cell 2014)
 - Dense stroma reaction a/w improved DFS and OS in patients with resectable pancreatic cancer (Sinn et al, Br J Cancer 2014; Torphy et al, ASCO 2015; abstract 4021).

Scales and de Sauvage, Trends Pharmacol Sci 2009; 30:303-12.

The immunotherapy revolution in cancer: How will it impact pancreatic cancer?

Vascular network **Junttila and de Sauvage, Nature 2013.**

Pancreatic cancer: a non-immunogenic tumor?

- Genetically engineered mouse models of show pancreatic cancer development is associated with a rich and progressive infiltration of leukocytes dominated by immune-suppressive cells:
 - Tumor-associated macrophages (TAMs)
 - Myeloid-derived suppressor cells (MDSCs)
 - Regulatory T cells (Tregs)
- Conversely, there is striking paucity of activated cytotoxic (effector) CD8+ T cells or NK cell

Pancreatic cancer is also on the lower end of the mutational burden spectrum compared to other solid tumors

Immune checkpoint inhibitors in pancreatic cancer

- Early studies of CTLA-4 and PD-1/PD-L1 antibodies showed minimal to no activity in advanced pancreatic cancer
- One exception: 1-2% of pancreatic cancers associated with defective mismatch repair (dMMR/MSI-high)

Immunotherapies undergoing evaluation for advanced/metastatic pancreatic cancer

Category	Description/Examples	
Immune checkpoint inhibitors	 PD-1 and PD-L1 mAbs CTLA-4 mAbs IDO inhibitors 	
Vaccines	 CRS-207 = attenuated mesothelin-expressing Listeria GVAX Algenpantucel-L ("hyperacute" vaccine) 	
CD40 agonist mAbs	• CP-870,893, APX-005M	
CCR2 antagonists	• PF-04136309	
Bruton's tyrosine kinase (BTK) inhibitors	IbrutinibACP-196	
CAR (chimeric antigen receptor) T cells	Pilot studies ongoingMesothelin represents frequent target	

CRS-207 (Mesothelin-Expressing Listeria Vaccine)

T cell

GVAX Pancreas Irradiated, whole-cell tumor vaccine **GVAX Dendritic cell Tumor antigens** Antigen uptake and activation **Tumor cell** destruction

CRS-207

Live-attenuated *Listeria monocytogenes*

Potent activation of innate and antigen-specific immune response

- Deletion of virulence genes (actA, inlB)
- Insertion of mesothelin expression cassette—validated immune target

Randomized phase 2 trial of GVAX +/- CRS-207 (pts receiving 2+ prior lines of chemotherapy)

Median OS, Full analysis set: Cy/GVAX + CRS-207: 6.1 months Cy/GVAX: 3.9 months

P = .02, HR = 0.59

Median OS, Per-protocol set (patients receiving at least one dose of CRS-207): Cy/GVAX + CRS-207: 9.7 months Cy/GVAX: 4.6 months

P = .02, HR = 0.53

Toxicities related to CRS-207: transient fevers, rigors, lymphopenia

1. Le DT et al. *J Clin Oncol.* 2015;33:1325-1333.

Randomized phase 2 ECLIPSE trial (accrual complete)

Successor studies looking at CRS-207 in combination with nivolumab +/ipilimumab

Primary endpoint was not met²

	CRS-207 + GVAX	CRS-207	Chemotherapy
Median OS, mo	3.8	5.4	4.6

^{1.} https://clinicaltrials.gov/ct2/show/NCT02004262. Accessed May 20. 2016.

^{2.} http://investors.aduro.com/phoenix.zhtml?c=242043&p=irol-newsArticle&ID=2168543. Accessed May 20, 2016.

Randomized phase 2 trial (Johns Hopkins/UCSF/Wash U collaboration)

Targeting tumor-associated macrophages (TAMs) in pancreatic cancer

Ruffell et al, *Trends Immunol*Beatty et al, *Science*Sanford et al, *Clin Cancer Res*Nywening et al, *Lancet Oncol*Zhu et al, *Cancer Res*

Therapeutic strategies:

- CD40 agonist antibodies
 - CD40 = member of TNF receptor superfamily
- CCR2 antagonists
 - CCR2 = receptor to chemokine CCL2
- CSF-1R antagonists
 - CSF-1/CSF-1R = colony stimulating factor axis

Chimeric Antigen Receptor (CAR) T cells

<u>Title</u>: Pilot Study of Autologous T-cells Redirected to Mesothelin and CD19 with a Chimeric Antigen Receptor in Patients with Metastatic Pancreatic Cancer

CAR-T protocol study schema

CART Expansion and Persistence in Blood SS1.BBz and huCD19 Q-PCR

CART19

Finally:

Can we validate any therapeutic targets and identify predictive biomarkers in pancreatic cancer?

Wong and Lemoine, Nat Rev Gastro Hepatol, 2009

Figure adapted from DB Ryan, N Eng J Med 2010

- K-Ras: is it truly "undruggable" (using competitive allosteric inhibitors)?
- "Whack-a-mole" what happens when we go after a single target in pancreatic cancer?
- Combined blockade of multiple signaling nodes,
 e.g. dual MEK/EGFR
 inhibition (AH Ko, Clin Cancer Res 2016)
 - 19/46 pts (41%) with S.D. >
 6 weeks
 - Rate-limiting GI/skin toxicity in many pts

Randomized phase 2 study (CARRIE) of istiratumab for metastatic pancreatic cancer

Genomic analyses identify molecular subtypes of pancreatic cancer: Potential therapeutic implications?

Bailey P et al. Nature. 2016;531:47-52.

PARP inhibitors in pancreatic cancer

- Phase II trial of olaparib in patients with germline BRCA1/2 mutations and advanced solid tumors
 - Objective responses
 observed in 5 of 23
 (21.7%) patients with
 pancreatic cancer
- POLO trial: Placebocontrolled phase III trial of olaparib as maintenance rx (in pts w/germline BRCA-1/2associated pancreatic cancer)

Kaufman B, et al. *J Clin Oncol*. 2015;33(3):244-50. Kindler HL, et al. *J Clin Oncol*. 2015;33(suppl; abstr TPS4149).

PRECISION PROMISE (sponsored by Pancreatic Cancer Action Network) -- \$35M initial investment

Initial 3 Sub-Studies

Conclusions

- Cytotoxic agents remain the mainstay of treatment for advanced pancreatic cancer
 - On a positive note: We are now able to offer more patients with metastatic pancreatic cancer multiple lines of therapy
- Stromal microenvironment plays an important role in pancreatic tumor biology
 - A variety of therapeutic strategies to modify/target the this stromal compartment are currently under investigation
- Immune-based strategies have thus far shown only modest efficacy
 - Novel combination approaches are needed
- Identification of predictive biomarkers and actionable therapeutic targets are elusive, but remain a high priority

EXTRA SLIDES

Notch signaling and pancreatic cancer

TRENDS in Molecular Medicine

- Mediates cell-to-cell communication in organ development, including pancreas
- Important in:
 - Maintenance of stem cell populations
 - Determination of cell fate decisions
 - Regulation of proliferation/apoptosis
 - Precursor lesion development (PanINs, etc.)
- Evidence for both oncogenic and tumor suppressive functions, depending on cellular context
- Functional interaction between Notch and Ras

Avila and Kissel, Trends in Mol Medicine, 19:320-27.

Inhibitors of Notch signaling

1. Tejada FNH et al. *Front Pediatr.* 2014;2:54. doi:10.3389/fped.2014.00054.

Tarextumab and Demcizumab Trials

	ALPINE Trial ¹ (Tarextumab)	YOSEMITE Trial ² (Demcizumab)		
Phase of study	Phase 1b/ randomized phase 2	Phase 1b/ randomized phase 2		
Indication	First-line	First-line		
Chemotherapy backbone	Gemcitabine/ nab-paclitaxel	Gemcitabine/ nab-paclitaxel		
Planned sample size	154	201		
Primary endpoint	PFS interir	Closed in Jan 2016 after interim analysis indicated strong trend to		
1. https://clinicaltrials.gov/c				

^{2.} https://clinicaltrials.gov/ct2/show/NCT02289898. Accessed May 20, 2016.